Vectorization

Woo-Sun Yang
NERSC User Engagement Group

NERSC User Group Meeting 2016
March 23, 2016 ~

=2, U.S. DEPARTMENT OF : A
Office of p—1l

X ENERGY Science

What’s All This About Vectorization?

* Vectorization is an on-node, in-core way of exploiting
data level parallelism in programs by applying the
same operation to multiple data items in parallel.

DO I= 1, N
Z(I) = X(I) + Y(I)

ENDDO

SCALAR VECTOR

=
é:l

add r3, ril,

(1 operation)

DAP Spr.‘98 @UCB 6

r2

(N operations)

add.vv v3, vl, v2

Office of
Science

Requires transforming a
program so that a single
instruction can launch many
operations on different data

Applies most commonly to
array operations in loops

<
A
rrrrrrr H

BERKELEY LAB

What is Required for Vectorization?

e Code transformation

DO I =
Z(I)
ENDDO

 Compilere

LT,
g \
i @ ;
7 g
% /5
2 %
S5 i

1, N

= X(I) + Y(I)

X(I), X(I+1)

DO I

Compiler

—_—

1

Z(I)

2 (I+1)
2 (I+2)
2 (I+3)

ENDDO

VLOAD Y(I), Y(I+1l), Y(I+2), Y(I+3)
X+Y(I, ...,

VADD Z (I,
VSTORE Z(I),

Office of
Science

., I+3)
7 (I+1),

7 (I+2) ,

Z (I+3)

2
S

X(I)
X (I+1)
X (I+2)
X (I+3)

- n n-

enerates vector instructions:
, X(I+2), X(I+3)

I+3)

+ Y (I)
+ Y(I+1)
+ Y (I+2)
+ Y (I+3)

What is Required for Vectorization?

* Vector Hardware: vector registers and vector
functional units

1 .
; 32‘b|t§ e
| 732 bits | |.;1’2 bit €—Vector length =—>
Y1 Yi | Y2 | Y| v
X1 xif | x2|| x3|| x4
512 bits 3 | THETERT]
...... \
Register File Scalar Unit -Vector ® {*/ ® @
e Vector Register File Unit - 3 b
71 Z1 2| |«
f) —
32 bits 512 bits

Office of

U.S. DEPARTMENT OF
@ ENERGY scence

Evolution of Vector Hardware NEF

. . SSE/AVX 128
Floating Point (FP)

AV X-512
SR

* Translates to (peak) speed: cores per processor X
vector length X CPU Speed X 2 arith. ops per vector

£EWY U-S. DEPARTMENT OF Office of
g

ENERGY Science e

Data Dependencies

 Examples:
DO I=2,N-1
A(I) = A(I-1) + B(I)
END DO Compiler detects backward reference on A(I-1)
Read-after-write (also known as "flow dependency")

DO I=2,N-1
A(I-1) = X(I) + DX
A(I) = 2.*DY

END DO Compiler detects same location being written
Write-after-write (also known as “output dependency")

ftn -qopt-report=2 -c mms.f90

Report from: Loop nest, Vector & Auto-parallelization optimizations [loop, vec, par]

ftn -qopt-report=2 -c mms.f90

remark #15346: vector dependence: assumed OUTPUT dependence between line 12 and
line 11

How to Vectorize Your Code?

LT
(4 0
B 2
1\ @ 5
L‘”An\m >

Auto-Vectorization analysis by the compiler

Auto-Vectorization analysis by the compiler enhanced
with directives — code annotations that suggest what
can be vectorized

Code explicitly for vectorization using OpenMP 4.0
SIMD pragmas or SIMD intrinsics (not portable)

Use assembly language

Use vendor-supplied optimized libraries

Office of
Science

Requirements for vectorization

Loop trip count known at entry to the loop at runtime
Single entry and single exit

No function calls or I/O

No data dependencies in the loop

Uniform control flow (although conditional
computation can be implemented using “masked”
assignment)

Office of
Science

Vectorization performance (speed-up)

* Factors that affect vectorization performance

— Efficient loads and stores with vector registers
e Data in caches

* Data aligned to a certain byte boundary in memory
e Unit stride access

— Efficient vector operations

* Certain arithmetic operations not at full speed

 Good speed-up with vectorization when all the
conditions are met

* Examples from

https://www.nersc.gov/users/computational-
systems/edison/programming/vectorization/

Office of
Science -9-

<
A
rrrrrrr ""|

BERKELEY LAB

How good is vectorization

 Compiler vectorization of loops

— Enabled with default optimization levels for Intel and Cray
compilers on Cori/Edison (and Intel on Babbage)

— Use -gopt-report[=n] -qopt-report-phase=vec flag
where (n is from 0 through 5; default: 2)

LOOP BEGIN at al.F(35,10)
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 6
remark #15477: vector loop cost: 2.000
remark #15478: estimated potential speedup: 2.990

remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=249
LOOP END

LOOP BEGIN at al.F(35,10)
<Remainder loop for vectorization>
remark #15301: REMAINDER LOOP WAS VECTORIZED
remark #25015: Estimate of max trip count of loop=3
LOOP END

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -10- E.;Eﬂ\‘%“?

P
(G
)"hmm“‘\‘

How good is vectorization (Cont’d)

* |Intel Advisor

— Vectorization analysis tool that identifies loops for vectorization
and reasons that blocks effective vectorization

* Many web pages on useful info

— https://software.intel.com/en-us/intel-advisor-xe

— https://software.intel.com/en-us/get-started-with-advisor-
vectorization-linux

— https://software.intel.com/en-us/intel-advisor-xe-support/
training

— https://software.intel.com/en-us/intel-advisor-2016-tutorial-
vectorization-linux-cplusplus

<
A
rrrrrrr ‘"'|

U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science -1l- WE&B

LT

1S e)

A (7])i
), 4
S i O

Data in Caches

doi=1,n
c(i) = a(i) + b(i)
end do

' \
21 L Ll ' IAU'Il A . '
(S N N T

Speedup over no vectorization

| | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000

Array dimension (n)

o

Speedup close the theoritical max below L1 Cache. Worse as array size
passes L1 size.

U.S. DEPARTMENT OF Ofﬁce of

) ENERGY Science

Data in Caches (Cont’d)

3 | | | | | R*;ll
R*8
2.5 F _
doi=1,n c
c(i) = a(i) + b(i) g L i
end do %
: 1.5
g | | “u\ l 'l | M
% Bl RMU"JN l\ﬁl”;l Miﬂ"w »»qu{«'uh-—m “"’U"ﬁ | HL_W’“_L___R
| |
0 1 | 1 | | 1

10000 15000 20000 25000 30000 35000 40000 45000
Array dimension (n)

Speedup drops again as pass L2 cache size.

) \

U.S. DEPARTMENT OF Ofﬁce of r:}‘ n
4 ENERGY Science BERKELEY ,u

Let’s try Intel Advisor on these runs

Analysis types that Intel Advisor provides
— survey: explore where to add efficient vectorization
— tripcounts: iteration counts for loops

— Refinement analysis
* map (Memory access pattern): memory access strides for loops
* dependencies: loop-carried dependencies

* Analysis can be run in GUI or CLI
— advixe-gui: GUl command
— advixe-cl: CLI command

 Add -g to the usual optimization flag (e.g., -g -03)

A “project” is a physical directory where analyses can be carried
out for a given executable

— Need to create the project directory and specify it so that analysis results
are saved there

— Can contain multiple analysis types (e.g., survey, tripcounts, map, ...)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -14- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

)"hmm“‘\“

Intel Advisor

Eile View Help

‘s

Welcome | €000 3

from survey
analysis

u.s.
ENERGY Science

Ba T AN &

N\ /globalfcscratch1/sd/wyang/advisor/p_vecadd_c+avx2 - Intel Advisor

©)

& Summary of predicted parallel

behavior
FILTER:

@ summary %% Suvey Report @9 Refinement Reports) Annotation Report

Vectorization Advisor

(Al Modules

1~)il sourei] ~ [[Loops

e

Vectorization Advisor is a vectorization analysis tool that lets you identify loops that will benefit most from vectorization.

O]

Program metrics
Elapsed Time: 1.83s
Vector Instruction Set: AVX

(® Loop metrics

Number of CPU Threads: 1

Total CPU time 1.76s N 100.0%
Time in1 vectorized loop 1.76s D 100.0%
Time in scalar code Os

(¥ Vectorization Gain/Efficiency™
Vectorized Loops Gain/Efficiency 6.85x @
Program Theoretical Gain 6.85x

(& Top time-consuming loops®

Loop Source Location Self Time? Total Time™ Trip Counts®

" vecadd vecadd.F:35 1.7600s 1.7600s 1406

& __libc_start_main ? 0Os 1.7600s

O vecadd vecadd.F:34 Os 1.7600s 1

Refinement analysis data™

These loops were analyzed for memory access patterns and dependencies:

rides Distributio

Site Location Dependencies Site Name

[loop in for_set_fpe_ at 2] No information available No strides found loop_site_16
[loop in for_set_fpe_ at 2] No information available 0% /100% /0% loop_site_18
[loop in for_set_fpe_ at 2] No information available 0% /100% / 0% loop_site_21
[loop in for_set_fpe_ at 2] No information available 0% /100% /0% loop_site_22
[loop in for_set_fpe_ at 2] No strides found loop_site_23

flnan in far check env name at 21

o information availab

Nn ahla atrides fary
frormsdependencies from map
analysis analysis

Innn <ite 24

v

INTELADVISOR201
vEI[AM Threa| - |

—-—

Some Advisor CLI commands

* From ‘advixe-cl -help’:
S module load advisor

$ mkdir myproj project directory; contains all the
following analysis results

results in
myproj/e000/hs000

$ advixe-cl -collect=survey -project-dir=./myproj -- ./a.out
$ advixe-cl -report=survey -project-dir=./myproj -format=text \
-report-output=survey.txt

results in

$ advixe-cl -collect=tripcounts -project-dir=./myproj -- ./a.out myproj /€000/trc000

$ advixe-cl -report=tripcounts -project-dir=./myproj -format=text
-report-output=survey.txt

results in

$ advixe-cl -collect=map -project-dir=./myproj -- ./a.out myproj/e000/mp000
$ advixe-cl -report=map -project-dir=./myproj -format=text \
-report-output=survey.txt
$ advixe-cl -collect=dependencies -project-dir=./myproj -- ./a.out
$ advixe-cl -report=dependencies -project-dir=./myproj -format=text \
-report-output=survey.txt results in
myproj/e000/dp000;

can take very long

~

A
I}

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -16- ;.;"E/_gﬁ

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

Intel Advisor for c¢(:) = a(:) + b(;)

 n=1500 (all data within L1 cache) using AVX2

@ Where should I add vectorization and/or threading parallelism? INTELADVISOR 2017

Elapsed time: 0.29s [Vectorized] [1) Not Vectorized] [%| FILTER: Al Modules T~ (Al sourc)] ~ |/[Loops - || Al Threads o - [o]

P summary %% Survey Report | @ Refinement Reports (3 Annotation Report

Why No Vectorized Loops Trip ... Instruction Set Anal...
Function Call Sites and Loops & |\VectorIssues |Self Timew |Total Time |Type e atinnol T T T i i Advanced Loca...
Vectorization?| vec . | Efficiency ‘Gai... VL ... | Median | Traits ‘Data ‘Num..
=1 [loop in vecadd atvecadd.... [] @1 Ineffecti.. 0.230sH 0.230sE Vectorized (... AVX 6.12x 8 45; 3 Float32 2;8 Unrolled by 4 vecadd.F:
30 [loop in vecadd at vecadd. ... [] 0.198s @ 0.198s @ Vectorized (B... AVX 8 46 Float32 8 Unrolled by 4 vecadd.F:3
+/U [loop in vecadd at vecadd.... [] 0.032sl 0.032s! Vectorized (R... AVX 8 3 Float32 2 vecadd.F:Z
(O [loop in __libc_start_main] O 0.000s (0.230s M Scalar 0
4/ [loop in vecadd at vecadd.F:34] [] 0.000s (0.230s B Scalar & inner loop ... 2500000 Float32 10 vecadd.F:2

Source Top Down | Loop Analytics | Loop Assembly ‘¢ Recommendations & Compiler Diagnostic Details

(4]
O 23 Instruction Mix
. S Memory:10 Compute:7 Other: 2 -
Vectorized (Body; Remainder) Total time ¥ Memory: 52.63% ¥ Compute: 36.84%
¥ Vector: 52.63%
AVX 0.23s v zoms |
Instruction Set ~ Self time ——————— @

Memory 53% (10) (N
Compute 37% (7) D
o Other 11%(2) @
Insruction Mix Summary

Median Trip Counts: 46; 3
©

~

U.S. DEPARTMENT OF Ofﬁce of

’\‘ A
ENERGY scionce 17- |

BERKELEY LAB

Intel Advisor for c¢(:) = a(:) + b(;)

* n=4000 (data cannot fit L1 cache) using AVX2

& Where should | add vectorization and/or threading parallelism?

INTELADVISOR 2017

Elapsed time: 2.27s _ FILTER: [All Modules |~ (A sourc| ~ |/[Loops |~ J[An Threads 1] E
, Summary & Survey Report 9 Refinement Reports & Annotation Report
) _ _ _ Why No Vectorized Loops Trip ... B Instruction Set Analysis 2|
Function Call Sites and Loops & | Vectorissues |Self Timew |Total Time |Type R~ [T Advanced
Vectorization? Vec...‘ Efficiency ‘Gai.., ‘VL ...|Median | Traits Data ... | Num..
(=¥ [loop in vecadd at vecadd.F:35] [} 1.948s @ 1.948s B Vectorized (B... AVX |~Q% 6.52x 8 125 Float32 8 Unrolled by 4
3|0 [loop in vecadd at vecadd.F:35] O 1.948s @ 1.948s B Vectorized (B... AVX 8 125 Float32 8 Unrolled by 4
=/ [loop in vecadd at vecadd.F:34] [0.012s! 1.960s B Scalar & inner loop ... 2500000 Float32 10
= [loop in __libc_start_main] O 0.000s (1.960s ® Scalar 0
Source | Top Down Loop Analytics | Loop A y ¥R dations & Compiler Diagnostic Details
(4]
1 948 Instruction Mix
. S Memory:8 Compute:5 Other: 1 F
Vectorized (Body) Total time ¥ Memory: 57.14% ¥ Compute: 35.71%
¥ Vector: 57.14% ¥ Vector: 28.57% 7 ..
AVX 1.948s B Does not tell

Instruction Set ~ Self time

Memory 57% (8) (N
Compute 36% (5) D
© Other 7% (1) @
Insruction Mix Summary

Median Trip Counts: 125
©

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

-18 -

© you about
effects of
cache misses

~

A
frreeerer I"‘

BERKELEY LAB

Intel Advisor for c¢(:) = a(:) + b(;)

 n=1500 (all data within L1 cache) using SSE

& Where should | add vectorization and/or threading parallelism? INTEL ADVISOR 2017

Elapsed time: 0.59s [Vectorized] [._Not Vectorized [| FILTER: |All Modules ~ Ji[An sourc] ~ JH(Loops « || All Threads | [o]

’ Summary % Survey Report 9 Refinement Reports 6 Annotation Report

7

¥ & Higher instruction set architecture (ISA) available ® X
Consider recompiling your application using a higher ISA.
Why No Vectorized Loops Trip ... Instruction Set Anal...
Function Call Sites and Loops & |Vectorlssues | Self Timew |Total Time |Type o ation? Advanced Loca...
Vectorization? Vec.,.‘Efﬁciency Gai... ‘VL ...|Median | Traits |Data ... | Num..
[+" [loop in vecadd at vecadd.F:35] [] @ 1 Ineffectiv... 0.400s @ 0.400s B Vectorized (B... SSE |z100% 4.66x 4 93; 3 Float32 1; 4 Unrolled by 4 vecadd.F:
4 [loop in __libc_start_main]] 0.000s (0.400s H Scalar 0
4/ [loop in vecadd at vecadd.F:34] [0.000s (0.400s B Scalar & inner loop... 2500000 Float32 6 vecadd.F::
Source Top Down Loop Analytics Loop Assembly ¢ Recommendations & Compiler Diagnostic Details
(Al
O 4 Instruction Mix
. S Memory:10 Compute:7 Other: 4 L
Vectorized (Body; Remainder) Total time ¥ Memory: 47.62% ¥ Compute: 33.33% >ther: 19.05°
¥ Vector: 47.62% \ : 23..
SSE 0.4s TEET Does you tell
Instruction Set Self time
=
©F| about effects
Memory 48% (10) (N
Compute 33% (7) D H
< Other 19%(4) @D of using SSE,
Insruction Mix Summary .
" | access strides
’
Median Trip Counts: 93; 3 dependencies,
O] =
. " > \
U.S. DEPARTMENT OF Office of r:}‘ ""

ENERGY Science -19- BERKELEY LAB

Memory alignment

e More instructions are needed to collect and
organize in registers if data is not optimally laid out

in memory

 Data movement is optimal if the address of data
starts at certain byte boundaries
— SSE: 16 bytes (128 bits)
— AVX: 32 bytes (256 bits)
— AVX-512 on KNL: 64 bytes (512 bits)

Office of

Science -20-

Memory alignment to assist vectorization

* From
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization

e Alignment of data (Intel)

— Fortran compiler flag -align
« ‘-align array<n>bytes’, where n=8,16,32,64,128,256, as in ‘—align array64byte’
* Entities of COMMON blocks: ‘-align commons’ (4-byte); ‘-align dcommons’ (8-byte);
‘-align gcommons’ (16-byte); ‘-align zcommons’ (32-byte); none for 64-byte
« ‘-align rec<n>byte’, where n=1,2,4,8,16,32,64: for derived-data-type components
— Alignment directive/pragmas in source code
* Fortran
— 1dir$ attributes align: 64::A — when A is declared
— 1dir$ assume_aligned A:64 — informs that A has been aligned
— 1dirS vector aligned — vectorize a loop using aligned loads for all arrays
e CorC++

— ‘float A[1000] __ attribute__ ((align(64));" or ‘__declspec(align(64)) float
A[1000];” when declaring a static array

— _alligned_malloc()/_aligned_free() or _mm_malloc()/_mm_free() to allocate
heap memory

— __assume_aligned(A,64)
— #pragma vector aligned — vectorize a loop using aligned loads for all arrays

PAENT O

&7 &
£ %)
B 2
2 /

)

U.S. DEPARTMENT OF Offlce Of

ENERGY Science -21- WE&B

Q2
SO

Memory alignment for multidimensional
arrays

 Multi-dimensional arrays need to be padded in the
fastest-moving dimension, to ensure array sections
to be aligned at the desired byte boundaries
— Fortran: first array dimension
— C/C++: last array dimension
* npadded = ((n + veclen — 1) / veclen) * veclen
— No alignment requested: veclen =1
— 16-byte alignment (SSE): veclen = 4 (sp) or 2 (dp)
— 32-byte alignment (AVX2): veclen = 8 (sp) or 4 (dp)
— 64-byte alignment (AVX-512): veclen = 16 (sp) or 8 (dp)

Office of
Science

-22 -

Memory alignment example

* Naive matrix-matrix multiplication on Edison

real, allocatable :: a(:,:), b(:,:), c(:,2)
!dir$ attributes align : 32 :: a,b,c

allocate (a(npadded,n))
allocate (b(npadded,n))
allocate (c(npadded,n))

do j=1,n
do k=1,n
!dir$ vector aligned
do i=1,npadded
c(i,J) = c(i,J) &
+ a(i,k) * b(k,J)
end do
end do
end do

!... Ignore c(n+l:npadded,:)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "23- WEN

<
A
rrrrrrr ‘"'|

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

Effect of vectorization (no alignment case)

 Runtime: -no-vec > -XxSSE4.2 > -xCORE-AVX2
(similarly for aligned cases)

e Runtime drops when nisa multlple of 4

100 ¢ .
C -no-veC —— 3
XSSE4.2 ——]
XCORE-AVX2
10 E
o
@
)
£
= 1 =
= E
@
wn
o
©
L
01 F E
0.01 ' ' ' .
10 100 e i

Array dimension (n) BERKELEY LAB

Effect of memory alignment

» Effect of padding rows (Fortran)
 Bumps get smoothened (toward better performance)
e Little improvement with ALIGN64 over ALIGN32

100

C -no-vec ——

i XCORE-AVX2 ——

- -XCORE-AVX2, ALIGN16

- -XCORE-AVX2, ALIGN32

10 b -XCORE-AVX2, ALIGNB4 —&— .
()
Q
vu
£
= 1 —
= -
Q
w
(@R
O
L
0.01 z

7 U.S. DEPARTA 10 100 rj}r‘ ‘lﬁl
@ ENE} Array dimension (n) SRR

AoS vs. SoA

* Data objects with component elements or
attributes

* Array of a structure (AoS)
— The natural order in arranging such objects

— But it gives non-unit strided access when loading into
vector registers

type coords
real :: X, y, 2
end type

type (coords) :: p(1024) [l N [T N TN @ =a =

real dsquared(1024)
do i=1,1024

dsquared(i) = p(1i)%x**2 + p(1i)8y**2 + p(i)%z**2 [T T 1]
end do (11

Office of

‘;7\‘{ U.S. DEPARTMENT OF /—\‘
ENERGY science - 26- BERKELEY LAB

<
A
rrrrrrr ‘"'|

AoS vs. SoA

e Structure of arrays (SoA)
— Unit strided access when loading into vector registers
— More efficient with loading into vector registers

type coords
real :: x(1024), y(1024), z(1024)
end type

type (coords) :: p N | [[[[[[

real dsquared(1024)

do i=1,1024 EEEE
dsquared(i) = p%x(i)**2 + p%y(i)**2 + p%z(i)**2 [[[||

end do (111

> Q% U.S. DEPARTMENT OF Ofﬁce of

ENERGY O™°)

>
A
rrrrrrr ""l

£

A0SoA

* With SoA, locality of multiple fields was reduced

e With Array of Structures of Arrays (Tiled Array of
Structures), we have locality over multiple fields at
the outer-level and unit-stride at the innermost-
level

type coords
real :: x(16), y(l6), z(1l6)
end type
type (coords) :: p(64)
real dsquared(16,64)

do i=1,64
do j=1,16
dsquared(J,i) = p(1)%x(J)**2 + p(1)%y(J)**2 + p(1i)%z(]J)**2
end do

end do

Office of s e i
Science e BERKELEY LAB

AoS

e aossoa.F from

http://www.nersc.gov/users/computational-systems/edison

rogramming/vectorization

& Where should | add vectorization and/or threading parallelism?

’ Summary % Survey Report & Refinement Reports & Annotation Report

FILTER: [All Modules | ~ |'[All Sourc/| ~ | [Loops

INTELADVISOR2017
[o]

|~ J[Anl Threads B

Vectorized (Body; Remainder) Total time

AVX; FMA 0.62s

Instruction Set Self time

 Irregular Memory Access Patterns May Decrease Performance
Suggestion: See Recommendations Tab

FMA
Memory 62% (15) (D Inserts
Compute 28% (8) I Shuffles
o Other 10%(3) @ v

Insruction Mix Summary * Irregular Memory Access Patterns May Decrease Performance

Suggestion: See Recommendations Tab

Median Trip Counts: 99; 4
©

~27%

- |

Instruction Mix
Memory:18 Compute: 8
¥ Memory: 62.07%

Other:3

2.18x |

¥ Vector: 48.28%

Vectorization Gain

o) reference efficiency for original scalar loop
& Efficiency is approximately ~27%, which means actual efficiency
may be lower
a 13% Reference Efficiency for original scalar loop
Reference Efficiency = (1x/Vector Length) * 100%
~1 (100%) Theoretical Maximum Vectorization Efficiency

Why No Vectorized Loops Trip ... Instruction Set Analysis
Function Call Sites and Loops & |\Vectorissues |Self Timew Total Time | Type o otinn
Vectorization? | vsec | Efficiency ‘ Gai...|VL ... |Median | Traits Data ...
=)< [loop in aossoa at aossoa.F:64] [] @2 Ineficient... 0.620sEE 0.620s B Vectorized (B... AVX2 218x 8 99:4 " Blends; FMA Inser.. " Float32
3/ [loop in aossoa at aossoa.F:64] [] @1 Inefficient... 0.592s B 0.592s @ Vectorized (B... AVX2 8 99 Blends; FMA Inser.. " Float32
/(O [loop in aossoa at aossoa.F:64] [] @1 Ineficient... 0.028sl 0.028s(Remainder 4 Y FMA Float32
= [loop in __libc_start_main] | 0.000s [0.620s B Scalar
40 [loop in aossoa at aossoa.F:64] [] @1 Potential .. 0.000s (0.620s M Scalar B inner loop ... 2500000
a u | B
Source | Top Down Loop Loop ly @ © Compiler Diagnostic Details B ~270/°
0.62 Trat] 2.18x
" Blends_ . | & I

Vectorization Gain

~27% Achieved Vectorization Efficiency
Achieved Vectorization Efficiency = (Estimated Gain/Vector
Length) * 100%
Estimated Gain = 2.18x
Vector Length =8

Orange color = Achieved vectorization efficiency is higher than

Vectorization Efficiency

1 Maximum Vectorization Efficiency = (Theoretical Maximum

Gain/Vector Length) * 100%
Theoretical Maximum Gain = Currently selected Vector Length = 8

SoA

e aossoa.F from
http://www.nersc.gov/users/computational-systems/edison/programming/vectorization

& Where should | add vectorization and/or threading parallelism? INTEL'ADVISOR 2017
Elapsed time: 0.26s [Not Vectorized] FILTER: |All Modules | ~ |/[All Sourc/| ~ |/ [Loops « |[All Threads v [o]
Q Summary % Survey Report ¥ Refinement Reports & Annotation Report
Why No Vectorized Loops Trip ... ‘ Instruction Set Anal... ‘
Function Call Sites and Loops $ |\Vectorissues |Self Timew |Total Time | Type - Advance
Vectorization? | vsec. | Efficiency ’ Gai.. ’VL Median ‘Traits ‘ Data ... ‘ Num..‘
=I5 [loop in aossoa at aossoa.F:60] [] @1 Ineffectiv... 0260sM 0.260s M Vectorized (B... AV 6.30x 8 99:4 FMA Float32 4
4" [loop in aossoa at aossoa.... [0.240s @ 0.240s B Vectorized (B... AVX2 8 99 FMA Float32 4
4 [loop in aossoa at aossoa.... [] 0.020s(0.020s! Remainder 4 “FMA Float32 4
/O [loop in __libc_start_main] O 0.000s 0.260s B Scalar 0
[+O [loop in aossoa at aossoa.F:60] [@2 Potential .. 0.000s [0.260s B Scalar Versions @ 1 inner loo... 2500000 4
(] u I [)
[¢)
Source Top Down = Loop Analytics | Loop Assembly ¢ Recommendations & Compiler Diagnostic Details 6 3 O ~79 /O
(2]
0 268 Traits . X [. |
. FMA L ; , ~: , ’ .
Vectorized (Body; Remainder) Totaltime ® Vectorization Gain Vectorization Efficiency
AVX: FMA ~79% Achieved Vectorization Efficiency
, 0.26s Instruction Mix Achieved Vectorization Efficiency = (Estimated Gain/Vector
Instruction Set Self time Memory:8 Compute:7 Other:3 Length) *100%
Memory 44% () (D ¥ Memory: 44.44% ¥ Compute: 38.89% Othe 3 Estimated Gain = 6.30x
Compute 39% (7) D " Vector " Scalar: 22 L Vector L th =8
o Other 17%(3) @B AVX: 22.22%] |AVX: 22.22% lm mll ector Length =
Insruction Mix Summary ® Orange color = Achieved vectorization efficiency is higher than
L reference efficiency for original scalar loop
Median Trip Counts: 99; 4 & Efficiency is approximately ~79%, which means actual efficiency
® may be lower
a 13% Reference Efficiency for original scalar loop
Reference Efficiency = (1x/Vector Length) * 100%
—1 (100%) Theoretical Maximum Vectorization Efficiency

Maximum Vectorization Efficiency = (Theoretical Maximum
U.S. DEPARTMENT OF Office of Gain/Vector Length) * 100%

@ EN ERGY Science -30- Theoretical Maximum Gain = Currently selected Vector Length=8 |

SIMD-Enabled (“Elemental”) function

* An elemental function operates element-wise and
returns an array with the same shape as the input
parameter

— Widely used in Fortran intrinsic functions (but not in a
vectorization sense)

 When declared, the Intel compiler generates a
vector version and a scalar version of the function

* A function call within a loop generally inhibits
vectorization. But a loop containing a call to an
elemental function can be vectorized. In that case,
the vector version is used

Office of

Science -31-

LT
£
£ %)
B 2
o\ @ 5/
R

SIMD-Enabled function example

module fofx
contains

function f(x)<

Line 7

!dir$ attributes vector :: £
real, intent(in) :: X
real £
f =cos(x *x+1.) / (x *x + 1.)

end function
end module

program main
use fofx
real a(100), x(100)
do 1i=1,100
a(i) =
end do

end program

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

‘7)
%@ﬁ

$ ifort -gopt-report=3 elemental.F

LOOP BEGIN at elemental.F(50,11)
remark #15300: LOOP WAS VECTORIZED

f(X(IN Line 50

-32-

OpenMP 4.0 SIMD constructs

e SIMD constructs for execution of a loop in
vectorization mode

#pragma omp simd [clauses..]

!Somp simd [clauses...]

* Optional clauses
— safelen(length)
— aligned(list[:alignment])
— reduction(reduction-identifier:list)
— collapse(n)

Office of s \"‘|
Science e BERKELEY LAB

OpenMP 4.0 SIMD constructs (Cont’d)

 Example

do j=1,n
do k=1,n
!Somp simd aligned(a,b,c:32)
do i=1,nr
c(i,j) = e(i,j) + a(i,k) * b(k,j)
end do
end do
end do

Office of

/\ Py
& ENERGY sconce

OpenMP 4.0 SIMD constructs (Cont’d)

e SIMD-enabled function (“elemental function”)

#pragma omp declare simd [clauses...]
function definition or declaration

!Somp declare simd(proc-name) [clauses..]
function definition

* Example

!Somp declare simd(f)
function f(x)
real £, x
f = cos(x * x+ 1.e0) / (x * x + 1.e0)
end function £
do i=1l,n
a(i) = £(x(1))
end do

U.S|. DEPARTMENT OF Ofﬂce fo)
JUTCTTIOT

ey
£ %)
i @ ;
7 g
2 /7
2 4
=g

More Intel Advisor usage tips NEeF

* Tool design and functionalities can change over time, but
here are some tips for using advisor/2016.1.40.455986
(default on cori)

* Torun a MPI code
— Via advixe-cl only (not GUI)
— Dynamically-linked executable

— Only one rank run through advixe-cl
— Run in MPMD mode if # of tasks > 1

$ salloc -N 1 -t 30:00 -p debug

$ ftn -dynamic -g -03 myprog.f
S module load advisor

$ cat mpmd.conf Rank O with advixe-cl; ranks 1-9, without
0 advixe-cl --collect survey --project-dir ./myproj -- ./a.out
1-9 . /a ° Out

$ srun --multi-prog ./mpmd.conf

£EWY U-S. DEPARTMENT OF Office of
; -36-

RS
Science BERKELEY LAB

More Intel Advisor usage tips (Cont’d)

* Intel compiler can generate multiple instruction
sets although they may not be executable on your
machine

* Below is to generate an executable on Haswell

nodes (-xCORE-AVX2) that also contains AVX-512
instructions (-axCORE-AVX512), to get a glimpse of
its expected performance

$ salloc -N 1 -t 30:00 -p debug

ftn -dynamic -g -03 -xCORE-AVX2 -axCORE-AVX512 myprog.f
module load advisor

advixe-cl --collect survey --support-multi-isa-binaries \
--project-dir ./myproj -- ./a.out

v n-n.
o

Office of o i
Science I BERKELEY LAB

More Intel Advisor usage tips (Cont’d)

* Select ’Analyze loops that
reside in non-executed
code paths’ in the Project
Properties window
(reached thru GUI’s ‘File -> T P e

~ [Refinement Analysis Types

e
L] [
’ 0 Dependencies Anal ysis Application ‘/global/cscratcm/sd/wyang/adwsul/m v
roject rropertes T ———
A

* See | sy ren e
https:// | —
software.intel.com/en-us/
blogs/2016/02/02/explore-
intel-avx-512-code-paths- e
while-not-having- Lo J [ome
compatible-hardware

U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science -38- WE&B

<
A
rrrrrrr ‘"'|

LT
1S e)

A (7])i
), 4
S i O

ore Intel Advisor usage tips (Cont’d)

FEile View Help

‘h B2 BE ¥TBAYUY & O

Welcome | €000 X

12 - Intel Advisor

1/sd/

X

Then, click this

INTELIADVISOR 2017
[a]

s Survey Report &

hy No Vectorized Loops B/ Trip ... B/ Instruction Set Analysis @ Advanced ||

Function Call Sites and Loops Vector Issues | Self Timew | Total Time | Type ¥ o
Vectorization? ‘Vec.. |Ga|.. ‘VL - ‘ Median |Traits ‘Data - ‘Num..lVectnr Widths | Instruction Sets ‘T
(=)0 [loop in matmat at matmat.F:59] [@1 Potentia.. 0.280sH 0.280sM Scalar Versi... @2 innerlo... 30 FMA; [FMA] Float... 5; [3] 256; [512] AVX; FMA; [AVX512F_512] [Unrolled]
[5G [loop in matmat at matmat.F:59] [] @ 1 Potential . 0.280s 0.280s M Scalar & inner loop . 30 FMA Float32 S 256 AVX FMA
(3 [loop in matmat at matmat.F:59] [] @1 Potential .. n/a n/a Scalar [Not E... @ inner loop .. FMA Float32 3 512 AVX512F_S512 Unrolled
1415 [loop in __libc_start_main] O 0.000s (0.280s M Scalar 0
 [loop in matmat at matmat. F:57] [] ©1Potential . 0.000s(0.280s M Scalar Versions & 2 inner l0o.. 100000 s: 3]
 [loop in matmat at matmat. F:58] [0 ©1Potential 0.000s { 0.280s B Scalar Versions & 2 inner loo 30 [Float... 5. [3] [512] [AVXS12F_512]
(31 [loop in matmat at matmat.F:68] 8] n/a n/a Vectorized (B... 5.34x 8 Contains Co|
15" [loop in matmat at matmat.F:1] o na na Scalar [Not E... 1 0
1" [loop in for_set_fpe_] O n/a na Scalar [Not E... 0 0
(5" [loop in for_set_fpe_] [©1lneficient.. n/a na Scalar [Not E.... 3 0
(51" [loop in for_set_fpe_] @] n/a n/a Scalar [NotE... 1 1
(31" [loop in for_set_fpe_] O n/a n/a Scalar [NotE... io 1
[loop in for_set_fpe_] 11 ©1lnefficient... n/a n/a Scalar [NotE... 8 Float32 1 128 SSE
[loop in for_set_fpe_] 1 @1 lInefficient... n/a n/a Scalar [NotE... 8 Float32 1 128 SSE
[loop in for_set_fpe_] @] n/a n/a Scalar [Not E... 0 0 v

Loop Analytics

m @ Compiler Diagnostic Details

This is an early version of the Loop Analytics tab; it will be
enhanced with more information over time.

Traits
@ 0.28s
Scalar Versions Total time FMA

AVX; FMA; [AVX512F 512] 0.28s

Instruction Set Self time

> Memory 60% (9) (D

> Compute 27% (4) B

© Other 13%(2) @
Insruction Mix Summary

Instruction Mix
Memory:9 Compute: 4
¥ Memory: 60%

Other: 2

Y Compute: 26.67% Other: 13.33%

¥ Vector: 26.67%

FMA: 26.67%

¥ Vector: 60%

AVX: 60%

Median Trip Counts: 30
©

Office of
Science

frreeerer

A
|||‘

-39-

ENERGY

BERKELEY LA

Bercte Nt Laporsory

U.S. DEPARTMENT OF]

N | ' ™
<

Vectorization sample codes :

e http://www.nersc.gov/users/computational-
systems/edison/programming/vectorization/

* |Intel-provided samples in SADVISOR_XE_2016_DIR/
samples/en

S module load advisor

$ 1ls SADVISOR_XE 2016_DIR/samples/en/C++
Vector_Tutorial Data_Alignment.tgz
Vector_Tutorial Introduction.tgz
Vector_Tutorial_ Memory_ Access_101l.tgz
Vector_Tutorial_Stride_and_ MAP.tgz
Vector_ Tutorial Vectorization_and_Data_Size.tgz
mmult Advisor.tgz

mpi_sample.tgz

nqueens_Advisor.tgz

tachyon_Advisor.tgz

vec_samples.tgz

$ 1s $ADVISOR_XE 2016 _DIR/samples/en/Fortran
mmult.tgz

nqueens.tgz
£EW U.S. DEPARTMENT OF Office of

1 ENERGY Science -40-

Intel Advisor 2016 tutorial

* https://software.intel.com/en-us/intel-
advisor-2016-tutorial-vectorization-linux-cplusplus

* Uses SADVISOR_XE_2016_DIR/samples/en/C++/
vec_samples.tgz

Office of

Science -41-

Office of

/\ Py
& ENERGY sconce

